If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-96x-640=0
a = 16; b = -96; c = -640;
Δ = b2-4ac
Δ = -962-4·16·(-640)
Δ = 50176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{50176}=224$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-224}{2*16}=\frac{-128}{32} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+224}{2*16}=\frac{320}{32} =10 $
| 2y+1=4y-1 | | 39+-8n(-3)=-8(3+4(-3))+3(-3)+n | | 23x+11+14x+21=90 | | 3x-9+6=12 | | 4x+186=129+x | | h(-2)=12/(-2) | | 39+-8n=-8(3+4n)+3n | | -12x+9=-23 | | y/9+3=-16 | | 15=55m=70 | | -12-3x+8=17 | | 1/2(x+12)=-15 | | 23x+11=+14x+21=90 | | 5/7=3x/84 | | -111-3x=189-15x | | -12-3x+8=15 | | 2x2+7x+5=0 | | 4/3(x-39)=x | | 7-c=28 | | 1/3(6x-9)=2x+13 | | 2/3x+5=33 | | 2x+3(4-2x)=2(x+3 | | f(3)=(3)^2+7 | | 10(2)=2y-6 | | -5=3/4x-6 | | -9r+8r=22 | | -9+8r=22 | | 16x^2-128x+289=0 | | 3/4x7/2=4 | | 4x+35=7x-9 | | 2/8=x/40 | | 1/2(x+12)=15 |